AD-A174 322

UNCLASSIFIED

MARINE CORPS COMBAT READINESS EVALURTION SYSTEM 11
SOFTHARE APPLICATIONS (MC (U) GEORGE WASHINGTON UNIV
WASHINGTON DC INST FOR MANAGEMENT SCIE K E CAVES
AUG 85 GWU/IMSE/SERIAL-T-581/85 F/G 972

]
)

-e' o e
ava’a -‘ If-“" LK

XX Ao
D P

««

s

a,:‘s.f.t.‘.
3 \’\“ A "

.,

- e ——

& B2s 25
£ =
b M2
E W Jl2o
LT ==

s
== [lie

@:Rocopy RESOLUTION TEST CHART
MATIONAL RUREAL OF STANDARDS 1963-A
-

'Q" "u’ '.
o s
".1 N c’ o

L)
. 0' ‘ .
} (38 o .b' .‘ “

S

JORDNS “.v '.:"‘t '.!\.!". . .t"n G '*«

Pk, L . THY e
R LRIt B

:::.
Marine Corps Combat Readiness

Evaluation System
. Softwnre Applications {(MCUCRESS/ THE
e Sutroutine Library
M o IrEn GEORGE
o by WASHINGTON
R UNIVERSITY
a W. E. Caves
{'“
“xf‘
Y
i
:'..'l
Ly
e‘t".

STUDENTS FACULTY STUDY R

FSEARCH DEVELOPMENT FUT
5 URE CAREER CREATIVITY CC

MMUNITY LEADERSHP TECKF
NOLOGY FRONTI4
ENGINEERING APH/S

AD-A174 322

Sar"
*9 bpe.

¢ CoRY

N
-~

Oy

Prs Tt THFOR SCANAGTMENT
CONCE AN ENGINTRING

. 1 v
Y -

". h"’ b A ‘.. ﬂ o 0‘ |;‘ L .) \."I.":‘. .’l"lt' “‘.u ” .0..: » ..i.- \

' Marine Corps Combat Readiness
Evaluation System
cftware Applications (MCCRESSA)

o Subroutine Library
sy

g

:\bg

s by

A

e

W. E. Caves

XS Readiness Research
oy GWU/IMSE/Serial T-501/85
o0 August 1985

e ‘ THE GEORGE WASHINGTON UNIVERSITY
i%v School of Engineering and Applied Science
<y Washington, DC 20052

Institute for Management Science and Engineering

bl ki) ELEc'TcE: Q

it

thyy Researcn Supported
'y by
Contract NOOO14-85-C-0T716
Ey Project NR 347 13t
o Office of Naval Research

», NOV 2 0 1985

"; kl(.'<
44
L

A

This document has been approved for public sale
A and releass: its distribution is unlimited.

. Ry T R P STV . n—

I UNCLASSIFIED
) SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
- : READ INSTRUCTIONS
i REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. T. REPORT NUMBER 2. GQVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
- GWU/IMSE/Serial T-501/85 Ma&
4 TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
, MARINE CORPS COMBAT READINESS EVALUATION SCIENTIFIC
ot SYSTEM SOFTWARE APPLICATIONS (MCCRESSA) g
;.‘:;: SUBROUTINE LIBRARY §. PERFORMING ORG. REPORT NUMBER
:‘;‘\
A9
d'?‘: 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Supported by
_ W. E. CAVES N00014-85-C~0716
K5
o) 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
" GEORGE WASHINGTON UNIVERSITY AREA & NORK UNIT huMBERS
: INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
WASHINGTON, D.C. 20052
vy 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
y;: OFFICE OF NAVAL RESEARCH 30 August 1985
;1::. CODE 411 S&P 13. NUMBER ozzm:s
ely GTON, VA 22217
:.:. 4. MONITORING AGENCY NAME & ADDRESS(if differant from Controlling Office) | 18. SECURITY CLASS. (of this report)
L
at,
» UNCLASSIFIED
\ T8s. DECL ASSIFICATION/ DOWNGRADING
jk) SCHEDULE
, | 16. DISTRIBUTION STATEMENT (of this Report)
iy
‘g
o APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION UNLIMITED.
'...
::\
;S‘ 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I diflerent from Report)
i
poid
:',:, 18. SUPPLEMENTARY NOTES
l’;:
l:..
:.y:‘
i:f'f 19. KEY WORDS (Continue on reverse side il necessary and identity by block number)
‘“t
,2., COMBAT READINESS TRAINING PROFICIENCY
::,' READINESS EVALUATION PERFORMANCE ASSESSMENT
iy READINESS
,IT 20. ABSTRACT (Continue on reverse side I necessary and identity by dlock number)
,::. A set of 24 subroutines for the Marine Corps Combat Readiness Evaluation
vl System Software Applications (MCCRESSA) programs are documented. These
Yo subroutines, presented resident on the IBM Series/l system at The George
"1 Washington University, are callable from either COBOL or EDL application
programs operating under Version 4 of the IBM Event Driven Executive (EDX).
’_’;:." These subroutines are written in either COBOL or the Series/] Event Driven
::l Executive Language (EDL) depending upon the ease/efficiency of implementing
";‘ the functions performed.
s
‘Ao FORM
) DD, an 7 1473 !?ITION OF 1 NOV 88 18 OBSOLETE UNCLASSTFIED
_ S'N 0102- LF-014- 6601 SECURITY GLASSIFICATION OF THIS PAGE (When Data Entered)

3 0

N e 13 5 YO Y S0 2 R 1 P YT AT L N L DA Do T q Rt W 4
’r‘-"l e.lﬁ."”l -'A‘—.A.' » 5‘4"' .. “-‘;‘r‘.# ".:‘l " ﬁ! "0' 2 ":’" (Da R u‘.’-"-.b!’le'l’- (} !.‘.q. :59“‘.!‘:.! .OJ t‘ G’J"J .!. l:' 1) \ el St \

- e« .

. T o

- yo

Xy

> o BT

- -

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Washington, DC 20052

Institute for Management Science and Engineering

Marine Corps Combat Readiness
_ Evaluation System
Software Applications (MCCRESSA)
Subroutine Library

by

W. E. Caves

Abstract
of
Readiness Research
GWU/IMSE/Serial T-501/85
: 30 August 1985

A set of 24 subroutines for the Marine Corps Combat Readiness
Evaluation System Software Applications (MCCRESSA) programs are
documented. These subroutines, presently resident on the IBM Series/1
system at The George Washington University, are callable from either
COBOL or EDL application programs operating under Version 4 of the IBM
Event Driven Executive (EDX). These subroutines are written in either
COBOL or the Series/1 Event Driven Executive Language (EDL) depending
upon the ease/efficiency of implementing the functions performed. .-

{ \\
é)2 9 F"T T 4,
: AT 3¢ 2}///1
1K M :
BVSE TYPRREY P i
] L — .. -
VP e
Research Supported Di oty o L s
by ; —‘ . & clay |
Contract NOOO14-85-C-0716 i__A'{‘x}latth.v Codes |
Project NR 347 131 ! Avuil ani/or
Office of Naval Research Tist | Spectial

Vs

P~

” i o

, P N L Lo ORI 4 A L AT e (Y T N e
33 3L IR A NS AN AR I YIRS PN s) ,~$

N
TR

A A

T-501

TABLE OF CONTENTS

|i,
N
ot
e
..;
A 0. Introduction 1
- 1. ALPHAM 3
a5 2. AVGP1J i
i 3. CLEAR 6
. i, CNTSEL 7
5. COBPGM 10
o 6. DIRECT 1"
e T. EVALHD 18
A 8. GETALL 21
e ‘
e 9. GETONE 22
. 10. GETWRD 23
i 1. IDCODE 25
iy 12; IDDECODE 26
) :
e 13. PRINTL 28
1 14, PUTALL N
) 15. PUTONE 32
o 16. ROMNUM 33
‘e‘.
" 1. SLIDET 34
% 18. SQROOT 35
B 19. TRANS1 36
| 20. UPCASE 38
.
L) ..
B 21. UNIQUE 39
) 22. UNITI2 40
W, 23. UNITID 41
> 24, YNRESP 42
b
&;’
e
&)
l,‘
e
5
"
!';
- 1 -
i ‘
n

~ M TR T T P e O e NN PN T 7 N iy Ry Ny
WA e L e G N e P e

. RN T
LSRR WLy AN RS M N

s THE GEORGE WASHINGTON UNIVERSITY
B N School of Engineering and Applied Science
i Washington, DC 20052

v Institute for Management Science and Engineering

. Marine Corps Combat Readiness
Evaluation System

iy Software Applications (MCCRESSA)
D Subroutine Library

ili:‘.l

\l“ [by

W. E. Caves

.7‘}\)
L‘I‘l“‘
&

e Readiness Research

GWU/IMSE/Serial T-501/85

ﬂ?: 30 August 1985

% !1
a0
Vgl

R 0. Introduction
hbl, The Marine Corps Combat Readiness Evaluation System (MCCRES) has
ﬁﬁp: : been operational since July 1978 and, since that time, the Readiness
@?& Research group has performed research on MCCRES concepts, procedures,
W and data. Since the third quarter of Fiscal 1981, this research has
ot been supported by an IBM Series/1 installed at The George Washington
. University. This support has allowed the development of MCCRES Software
‘Qﬁx Applications (MCCRESSA) programs in a COBOL environment similar to that
{gﬂy existing within Headquarters USMC (HQMC). Thus, the programs developed
QQM' to support the MCCRES research conducted at The George Washington
o University are also suitable for operation at HQMC and, in some

e instances with modification, at Marine Units in the field. In fact,

e such MCCRESSA programs are presently operating at HQMC and in the field.
5_1 &‘O?
;?ﬁ: This paper describes a set of subroutines callable by either
‘5§§ COBOL or EDL application programs. In order to facilitate its use as a
?Qd reference document, each subroutine's documentation begins on a new

»” page, is ordered alphabetically, and all pages have the subroutine's

— name at the top. These subroutines are available in the library volume
%ﬂ- named EDLLIB. The subroutines are made available as object modules for
“3‘ linking into applications programs by the data set EDLAUTO,ELDLIB. A
,ay‘ copy of this data set appears as Figure 0.1.
) n"

< References [1] through (10] contain related MCCRES material.

B
» ‘.;A‘
O
il

b

LY
-.'.nlv;‘i s .“. ‘0 "
(AL, Al "'a_\‘a“j,ﬁ

LI
'.’\,-

F"{

%

\ N . ‘ L . ‘ .
) ¢ (OGRAF W) A AT Q g &

R ; N S AOBON DS O OO0 L N Y
el SACIERARBO SRR ’::‘°~ AP »"h‘ah"'h"lu"";‘!'.'~’f'.'!'»‘?'u"':‘?h\h‘.'tl RSO0 000

! T-501

Wl ST T
L e o e T e

. COBPGM#0,EDLLIB COBPGM
GETONE#0,EDLLIB GETONE
GETALL#O,EDLLIB GETALL
. PUTONE#O,EDLLIB PUTONE
“ PUTALL#O,EDLLIB PUTALL
: SLIDET#0,EDLLIB SLIDEL SLIDER
! PRINTL#0,EDLLIB PRINTL
. CLEAR#0,EDLLIB CLEAR
ROMNUM#1,EDLLIB ROMNUM
UNIQUE#O,EDLLIB UNIQUE
YNRESP#0O,EDLLIB YNRESP YN$WORK
s GETWRD#0,EDLLIB GETWRD GW$WORK GW$BEGIN GW$SCANI GWS$RESPL
& TRANS1#0,EDLLIB TRANS!
3 UPCASE#0,EDLLIB UPCASE# UPCASE
ALPHAM#O,EDLLIB ALPHAM YN$WORK
;z IDCODE#0,EDLLIB IDCODE
IDDCOD#0,EDLLIB IDDECODE
o UNITI2#1,EDLLIB UNITI2
i EVALHD#1 ,EDLLIB EVALHD
SQROOT#0,EDLLIB SQROOT ITERCNT
, DIRECT#0,EDLLIB GETRCD PUTRCD CLOSEF
iy UNITID#0,EDLLIB UNITID
CNTSEL#1,EDLLIB CNTSEL
\ AVGPIJ#1,EDLLIB AVGPIJ
b #REND

EDLAUTO.EDLLIB

Figure 0.1

i

- .. -
T e

P - -
o v -

BOLOROL AN \ A0 (SRS O g 4 S T o Tn o O P A P A P R L T X
DESCRINEL I LI M A) ; . il ; ! :
A RN AR O OONES SOOI £\ A LA o T ¢ P SN L e M Xadh s KBRS A

hdbeshh i diaet TR VYT Uy e =

1. ALPHAM

1.1. Description:

v
i

nis EDL subroutine checks a TEXT area to determine if its
contents is alphameric. Alphameric is defined here to be a string of
one or more characters, each of which i{s either strictly alphabetic,
numeric, or a member of a set of special characters, and, optionally,
the first character is not numeric. In other words, the character

string is a traditionally valid tag.

The results of this test is returned to the calling routine in
the current length field of the TEXT area tested. If the field is
strictly alphameric for the current length of the TEXT area, the current
length value is unaltered. Otherwise, it is set to zero before this
subroutine returns to the calling routine.

The format of the requisite EDL call statement is as follows:
CALL ALPHAM, txtadr,sctadr,ctlwrd
where the three arguments are defined as follows,

txtadr The address of a TEXT area containing the word to be
tested.

sctadr The address of a TEXT area containing a set of special
characters to be considered alphabetic in the alphameric
test. 1If this argument is zero and the control word
below requests that special characters be included in the
test, then the three characters dollar sign ($), pound
sign (#), and at sign (@) are the special characters
considered alphabetic.

ctlwrd The control word argument is passed directly. Only the
two least significant bits are used by this routine.
Their hex value and meaning are as follows.

HEX Meaning

02 1 -> no special character table is to be used.
o1 1 -> first character may be numeric.

1.2. External Addresses:
ALPHAM Subroutine entry point.

1.3, Called Subroutines: None.

------------- -

’P.."' .-~..~-..: . .‘- et et AT AR Tt et T
L - -

AP AR AT T A A P e e N IR T A T N A A ALY \- LN -"‘-7’\"'\\
NN S T N N S .
/ ﬁ'.) r « s }'. ‘\'f_ R <+ 1 .j':ai'r-".S,:.!: » [‘551" ~ W'

':";’j? 7'501
AVGP1J

5 £
R
A‘.z,

R 2. AVGPLJ
i‘t‘,i
A 2.1. Description:

il This CO50L subroutine will compute the average probability of a
t: requirement being scored yes, P, and its standard error, SE, based upon
a*l a sample population having the number of evaluated requirements, E, and
§¢ the number of those scored yes, Y. The calculations performed are

2y defined as follows.

Y For E = 0

iﬁa

D P =0.5
‘:t:

N SE = 0.5
ﬁqt For E > 0
oy
:é. For Y=0or Y =E
23 Y=Y+ 0.5
b”l. E=E +1,0
N P = Y/E
g
& 172

. SE = ((P(1-P))/E)

4.

vy}

,ﬂQ The format of the requisite COBOL call statement is as follows:
o M

ity

;%' CALL "AVGPIJ" USING ctabi prob-est-parm

l.;

N where ctabi is the index of the category for which the calculations are
‘xi to be performed and prob-est~parm is the probability estimating category
WA table used by FORECAST. The first parameter is simply a binary number
':E with a COBOL definition of
t‘.'
i PIC 59999 COMP SYNC.
g6
,@% The second parameter is defined in COBOL copy code named PECATPRM. This
5$ code is given in Figure 2.1. The only data elements of interest in this
Qf copy code are ECNT and YCNT, referenced by this routine, and PJ and SE,
K set by this routine.

. 2.2. External Addresses:
)
ol “

Ae
.;} AVGP1J Subroutine entry point.

h Cad
()
hv 2.3. Called Subroutines: SQROOT.
oy
R
’:::'s
o - -
R 4
n‘ -q"

o
O T b T L e I g e R T L R R

o

1 PROB-EST-PARM.
2 STACK-CTL.
1000 3 CAT-MAX
0 3 CAT-NEXT
3 CAT-TAB-LEV
3 CAT-LOAD-LEV
2 CAT-STACK.
3 CAT-STK
4 FROMI
4 NEXTI
4 DOWNI
4 CAT-STK-CTRS.
RCNT
ECNT
YCNT
PJ
SE
FJ
4 CAT.
5 CAT
5 CAT2
5 CAT3
4§ NOMEN
4 CATLEV
§ PSEFORCE

(S G G RS RV R

PIC S9999 compP
PIC S9999 ComP
PIC S9999 COMP
PIC S9999 cCoMP

T-501
AVGPlJ

02/02/85

SYNC.
SYNC.
SYNC.
SYNC.

OCCURS 1000 TIMES.

PIC S9999 COMP
PIC 89999 COMP
PIC S9999 COMP

PIC S9(9) COMP
PIC S9(9) COMP
PIC S9(9) coMP
PIC S9(1)V9(6)
PIC S9(1)V9(6)
PIC S9(1)Vv9(6)

PIC Xx(2).
PIC X.

PIC X.

PIC X(10).
PIC 9.

PIC X.

Probability Estimating Category Table

Figure 2.1

SYNC.
SYNC.
SYNC.

SYNC.
SYNC.
SYNC.
COMP SYNC.
COMP SYNC.
COMP SYNC.

T-501
CLEAFR

-

W 3. CLEAR

MY

Wy) .

8 3.1. Description:

Lﬁ& This EDL subroutine, to be calle? from a COBJL program, clezrs
M) the static USEk terminal from which the program was loaded. 1f the USEH
ft terminal is not static this subroutine simulates a no operation.

L)

Lt The format of the requisite COBOL call statement is as follows:
N CALL "CLEAR",

.

?. where no arguments are required. The subroutine actually has one dummy
X argument which is required for any COBOL call.

3.2. Fxternal Addresses:

W

]

{ CLTAR Subroutine entry point.

]

:b 3.3. Called Subroutines: None.

s

X
o >
b

h
K :::

B
35

-

D
.
’ »
[}

X s
%

'@"

1,

.J
-
[. .
‘l
1A
%\

\
e

-
£

AFFEE
!
(o)
)

LA S - N R R A T St T T R T
O R A R A 1 S A

i) &

T-501
CNTSEL

4, CNTSEL
4,1, Description:

Trie T0510 subroutine will builc a crose refe-ence table of
requirement csunts column indexes that a) are flaggel as selected, b)
have an evaluation closing date that falls within a given range, and c)
have a group code of interest. The selection flag table, ‘'from' and
'to' dates defining the evaluation closing date range, and the table of
group codes of interest are typically filled by SETPRM.

The format of the requisite COBOL call statement is as follows:
CALL "CNTSEL"™ USING sel-parm crfile-hdr hdr-parm

where sel-parm, crfile-hdr, and hdr-parm are defined in copy code
modules named SELPARM (Figure 4.1), HDRPARM (Figure 4.2), and CRHDRPRM
(Figure 4.3), respectively. CNTSEL sets XREF-CNT and XREF-TAB, uses
GROUP~-SELECT-TEST as a work area, and references the remainder of
SEL-PARM. HDR-PARM is used in the call to UNITI2. The file names and
EDX volumes must be set prior to invoking this subroutine. Finally,
CRFILE-HDR-PARM must have been initialized by CRINFO.

The requirement count columns scanned by CNTSEL are from OLD-NXT
to NEW-CNT. If PARM-FROM-DATE is blank no date selection is made. If
PARM-FROM-DATE is non-blank and PARM-TO-DATE is blank the single day
defined by PARM-FROM-DATE is the date select range.

4,2, External Addresses:
CNTSEL Subroutine entry point.

4,3, Called Subroutines: UNITIZ.

-'--'-,"'-"-"'-_"'- '.1‘ -_. " -__ RRAREL L _.'._..'. ’ _.-‘, RS R '.-_A.-"_.'_‘_'\'j _.‘.(e ,,.‘.
PN A I A AR I TN I PE AP L&~I.£‘{L‘1L,‘_ﬂd‘\Al"_‘\LA~ o e :‘f .A."

- T-501
CNTSEL
-
o
Lk * REQUIREMENT FREQUENCY COUNTS FILE SELECT PARAMETER - 01/07/85
N . #
. 1 SEL-PARM.
2 XREF-CNT PIC S9999 COMP SYNC.
oty 2 XREF-TAE PIC S9999 COMP SYNC OCCURS 16C TIMES,
RN 2 PARM-FROM-DATE.
Q& 3 MO PIC X(2).
'y 3 FILLER PIC X.
o 3 DA PIC X(2).
3 FILLER PIC X. |
= 3 YR PIC X(2).
R 2 PARM-TO-DATE.
G 3 MO PIC X(2).
e 3 FILLER PIC X.
e 3 DA PIC X(2).
3 FILLER PIC X.
'y 3 YR PIC X(2).
144 2 GROUP-SELECT-TEST PIC X.
2 2 GROUP-SELECT-CHAR PIC X OCCURS 15 TIMES.
N 2 EVAL-SELECT-CHAR PIC X OCCURS 160 TIMES.
X
:t;v.': Requirement Counts File Select Parameter
)
::‘ Figure 4.1
_l’
e
a;:'l
ig' . EVALHD/UNITI2 PARM - 01/07/85
o .
e 1 HDR-PARM.
be "2 HP~-ERR-CODES PIC S9(9) COMP SYNC.
o 2 HP-ERR-NUM PIC S9999 COMP SYNC.
o 2 HP-EVAL-ID.
K 3 HP-VOL PIC 9(2).
e 3 HP-EVAL PIC 9(3).
Y 3 HP-EVAL-DEF2 REDEFINES HP-EVAL.
N 4 HP-EVAL-CHAR PIC X OCCURS 3 TIMES.
- 2 HP-UNIT-EDXVOL PIC X(6).
e 2 HP-VOL-FILE PIC X(14).
}kj 2 HP-LIST-FILE PIC X(14).
W 2 HP-GROUP PIC X.
0 2 HP-SECTS.
e 3 HP-SECT PIC X OCCURS 7 TIMES.
- 2 HP-POSITIONSW PIC X(1).
o 2 HP-FIXEDSW PIC X(1).
o\
o UNITI2 Parameter
Figure 4.2
-'){';l
Ly R
et
iy -8 -

B I e S SRt

® 2149 CHARACTERS
1 CRFILE-HDR-PARM.
2 PARM~PART1,
CAT-ID -
CAT-LEVEL
OLD-CNT
NEW-CNT
IP-GROUP-TABLE
IP-VOL-TABLE
IP-SECT-TABLE
2 OLD-NXT
2 NEW-NXT
2 PARM-PART2.

3 COUNT-ID
ID-VOL
ID-EVAL
ID-GROUP
ID-SECTS

W W Wil www

= s r

hEExBREEE COUNT REQUIREMENTS

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

FILE HEADER MEMORY FORMAT DEFINITION
11/20/84

X(2).
9.
9(3).
9(3).
X(15).
X(24).
X(15).
9(3).
9(3).

OCCURS 160 TIMES.

PIC
PIC
PIC
PIC

9(2).
9(3).
X.

X(7).

Requirement Counts File Header Parameter

Figure 4.3

T-501
CNTSEL

-
" ., . .

.“v
N
"" "‘x ..

¥,

<,
3,4

o
M

T-501
COBPGM

5. COBPGM
5.1. Description:

Tris EDL sutroutine sets up the requisite COBCL environment anc
then calls a main COBOL program. The COBOL compiler normally generates
three object modules which must be linked together to form a program.
These object modules are identified by suffixes to the main program name
as follows:

pgmnme#C EDL entry stub for a COBOL main program.

pgmnme#! Object code for program instructions and static data
areas.

pgmnme#B Input/Output buffer areas.

If a COBOL program is to be loaded by an EDL 'root' program the
compiler supplied entry stub must be replaced. Most MCCRESSA programs
are of this type and, as such, the practice has been to write a custom
EDL entry stub, to name its source module 'pgmnme$S’', and to name its
object module 'pgmnme$0'. The common code for a custom entry stub has
been assembled as this subroutine.

The format of the requisite EDL call statement is as follows:

CALL COBPGM, pgmnme, cobprm, exeprm

where the three arguments are defined as follows.

pgmnme The address of the entry point in the pgmnme#1 object
module. This field is required.

cobprm The address of a table of addresses locating the COBOL
application program's parameter areas.

exeprm The address a COBOL execution time parameter, if any. If
no such parameter is supplied this parameter must be zero
(it is presently zero in all MCCRESSA programs). If
supplied, this parameter must locate a character string
bounded by slashes that contains COBOL execution time
option keywords.

5.2. External Addresses:
COBPGM Subroutine entry point.

5.3. Called Subroutines: COKICIAO, COKGTRTO, & RETURN.

_10-

o T og O o, "
S ERLRAREN
= L)

AT

LT N A A B LI BNy
At A . - IR |
he, o

L ..-ﬁ.‘ "
NOSS Lo

T-501
DIRECT
¥ 6. DIRECT
6.1. Description:

N DIRECT#0,EDLLIE is a set of recc~d orientec fixed block direct

:k access input/output subroutines designed to be called from a COBOL

:% program, The specific subroutine names are GETRCD, PUTRCD, and CLOSEF.
@ It is assumed that any referenced file already exists, i.e., no

v provision is made for allocating a file, and that all physical blocks

) are 256 bytes. Also, file opening is implicit and file closing may or
ji may not be implicit depending upon whether or not a call to "UTRCD was
& made.

6.1.1. File Control Block, First Parameter:

All input/output control areas for a file are contained within a

KX file control block. Since the file control block is maintained within

«$‘ the calling routine, any number of files may be open at one time.

}: Included within a file control block is a stack of one or more

:@ input/output buffer areas. This stack i{s 'rotated' with use such that a

i buffer's position in the stack is an indication of its ‘'age' in terms of

. last use with the top position of the stack being occupied by the most

4; recently used buffer. No actual disk reading/writing takes place for

5; any GETRCD or PUTRCD request if the requested logical record is already

q in one of the buffers. If the requested logical record is not already

& in one of the buffers, the 'oldest' buffer is moved to the top of the
stack, the current block is written to disk only if it was modified

. (i.e., the target of a previous PUTRCD request), and the block

ﬁ' containing the requested logical record is then read into the buffer.

uf : This block read does not take place if the action requested is PUTRCD

:k and either the blocking factor is one or the requested block is 'new' to

w the logical file.

Figure 6.1 gives a typical file control block described in COBOL
oM statements. For reference purposes, & line number is included at the

$ end of each line in Figure 6.1.

k)

? 6.1.1.1, The value supplied in line 02 is the decimal equivalent of hex
' 010k which represents subroutine level 1 EDX level 4, the current

, mod-level, of DIRECT#0. This value is checked only at the first linkage
ﬁ to any one of the subroutines. If it is not equal to the current

a subroutine mod-level the subroutine issues a message and a PROGSTOP 16.

‘zq After this initial program check, this area is used as a return code for
W the called routine. A -1 indicates that the requested action was taken.
- If such is not the case a return code (in the 100s) is issued.

o 6.1.1.2. The value supplied in line 03 is the indication that the file

-, is not open. The calling program may, at any time, cause the next

o4 GETRCD or PUTRCD linkage to open the file by setting this field to

;J zero. This field and the following 64 bytes are used as an EDL DSCB.

¢ The first word of the DSCB {s always -1 except when the previous action

, was unsuccessful in which case this value is greater than zero.

)

.w

K -1 -

:@

‘..

“\ - v, v PRV YR
nTavy) e (Y ‘. 0y . ¢ ! * \ 5 e
AL ';‘.h‘?‘.‘. X A"-_!‘,M‘% Cfg Sl ..." .,l,", L4 OuX

Py

N e T N xR S T A =" O RO LA N
% YAV V ['>‘v‘~".w&|‘!h. « \:‘a; ' ’.‘0. 'l. (4 05’0.\‘0~) U'l A NLHLT,

IR ,.‘ (R .< , t‘

. R, ® DR I A L S S T TS S S N ‘-
gl TR N B PR NC AT AR AP N S
[Aw Ba . WA c,rs"-,. "*»"'\ 9%

T-501

DIRECT

1 I10-FILE~CONTROL-BLOCK. 01
2 I0-RET-CODE PIC S9999 COMP SYNC VALUE 260. 02
2 I0-DSCB-CODE PIC S9999 COMP SYNC VALUE 0. 03
2 FILLER PIC Xx(6%). 2]
2 10-DSN PIC X(8) VALUE "DDDDDDI22". 0%
2 10-vOL PIC X(6) VALUE "VVVVVV", 06
2 I10-LOG-RCD-LNG PIC S9999 COMP SYNC VALUE ni1. 07
2 10-STACK-SIZE PIC S9999 COMP SYNC VALUE n2. 08
2 10-BLOCK-FAC PIC S9999 COMP SYNC. 09
2 I10-ALLOC-SIZE PIC S9(9) COMP SYNC. 10
2 I0-USED-SIZE PIC S9(9) COMP SYNC. "
2 I10-LAST~BLOCK PIC 8§9(9) COMP SYNC. 12
2 I0-BUF-I PIC S9999 COMP SYNC. 13
2 I10-DEBLK-1 PIC $9999 COMP SYNC. 14
2 FILLER PIC X(2%n2). 15
2 FILLER PIC X(2). 16
2 10-BUFFERS OCCURS n2 TIMES. 17

3 I0-BUF-BLOCK-NO PIC S9(9) COMP SYNC. 18

3 10-BUF-MOD-SW PIC X. 19

3 FILLER PIC X. 20

3 I0O-BUF-RCD PIC X(n1) OCCURS n3 TIMES. 21

3 FILLER PIC X(n#). 22

File Control Block

Figure 6.1

6.1.1.3. The values supplied in lines 05 and 06 are used to update the
DSCB during an open operation only. An open operation takes place
during a GETRCD or PUTRCD linkage with I0-DSCB-CODE zero. If the
requested record number (see paragraph 6.1.2 below) is zero the linkage
is simply an open request. Otherwise, the requested get/put action
takes place following a successful open.

6.1.1.4, The value supplied in line 07, n1, is the logical record
length for the subject file. It may be any value from 1 to 256. This
n1 also appears as the length of I0-BUF-RCD in line 21.

6.1.1.5. The value supplied in line 08, n2, gives the number of buffers
used for 1/0 operations. It may be any value greater than 0. The area
reserved by line 15 must be two bytes for each buffer and the number of
buffers defined in line 17 must be nZ2.

6.1.1.6. Each buffer contains n3 logical records of nl bytes each as
defined in line 21. Here, n3 = floor(256/n1). Any unused space is
defined by the filler in line 22 where nd4 = (256 - n1*n3). This line is
omitted if nd = O,

- 12 -

L

NN, 2

«
b (Lo Pal Mn Nop oy Mo Rp g P 2a N 1N, 010,97

SR W WO

N e
-

»

A

33

N T-501

DIRECT

oy
N
gg 6.1.1.7. Lines 09 through 22 are initialized during an open operation
~qg and updated as appropriate during normal subroutine operation.
5

6.1.1.8. IO~RET-CODE and IO~DSCB-CODE may be redefined together as PIC
e $9{9) COMP SYNZ in which case the value would be -° for all successful
L subroutine calls. If the value is not -1, IO-RET-CODE and 10-DSCB-CODE
¢§¢ should each be analyzed to determine the error. The possible value. for
ot each of these return codes are given in paragraph 6.1.6 below.

. 6.1.1.9. The following is an alternative definition for lines 17 thru
"y 22.

3% 2 FILLER PIC X(262) OCCURS n3 TIMES. 17
KW
" 6.1.2. Logical Record Area, Parameter two.
Gy The linkages GETRCD and PUTRCD each require a second parameter.
ﬁs This parameter, again described in COBOL statements with line numbers
%ﬁ (continued from Figure 6.1), is given in Figure 6.2. This parameter
Ll supplies the logical record number (line 32) and the logical record
8 (l1ine 33). Here, the n1 must be the same value as the nl appearing on
N line 07. '
.
o
Iy o 1 LOG~RCD-AREA. 31
e 2 LOG-RCD~NUM PIC S9(9) COMP SYNC. 32
e 2 LOG-RCD PIC X(n1). 33
N
;5 ' Logical Record Area
“
)
! Figure 6.2
.
o
[
Ty
:ﬂ; 6.1.3. Get Record Entry.
AN
‘N A GETRCD request may be made for any record number O thru
. I0-USED-SIZE. As stated earlier, a request with a logical record number
@' of zero is simply an open request. A requext with a record number
ks greater than IO0O-USED-SIZE returns with an IO-RET-CODE of 110 indicating
b : end-of-file and the LOG-RCD area unchanged. An actual get record
40N request has a logical record number from ! thru IQ-USED-SIZE. Such a
sl request searches the buffers to determine if the requested block is in
: memory. If the requested block is not in memory, the 'oldest' buffer is
o moved to the top of the stack. It is then checked to determine if the
V. current contents have been modified. If its contents have been modified
j} the block is written to disk before the requested block is read into the
qf{ buffer. In any event, the requested logical record is moved to LOG-RCD

and the I10-BUF-I and IO-DEBLK-I fields are updated.

L
A
0.'
) -1 -
12,_'. 3
a
W
f;; O e \.
W T L PR PR AN . ARGRA < - IO e = -
N ,‘I‘ﬁ .l“\.".l 8’ ‘ ".%‘ he, g A0 , W) f '(' 'f \ A '(b‘.“"".‘".‘ \‘ ‘\'ﬁ X-’ -)‘ R"p'l’-_ -Q!h s.'\\ »

it T-SO1
DIRECT
6.1.4, Put Record Entry.

A PUTRCD request may be made for any record number 0 thru
IO-USED-SIZE+1 that does not exceed IO-ALLOC-SIZE. As above, a request

by for logical record number . is simply an open reguest. A request with a
:Qﬁ record number greater tha I0-ALLOC-SIZE returns an IO~RET-CODE of 120
{q‘ which is an output end-of-file indication. A request with a record
?{{ number greater than IO-USED-SIZE+! returns an I0O-RET-CODE of 104
WS indicating that a 'gap' in the file would be created if the request were
N honored. An actual put record request has a logical record number form
;ﬂ; 1 thru I0-USED-SIZE+1. Such a request searches the buffers to determine
Ao if the requested block is in memory. If the requested block is not in
}?: memory, the 'oldest' buffer is moved to the top of the stack. It is
:}3, then checked to determine if the current contents have been modified.
T If its contents have been modified the modified block is written to
disk. 1In any event, the requested block is read into the buffer if {ts
O, number does not exceed IO-LAST-BLOCK and the blocking factor is greater
o than one. If its number does exceed IO-LAST-BLOCK, IO-LAST-BLOCK is
hat stepped. If no read takes place, the buffer block is initialized to
-“ﬁ binary zero. Finally, LOG-RCD is moved to the buffer and the IO-BUF-I
g and IO-DEBLK-I fields are updated.
i 6.1.5. Close File Entry.
.3'. A CLOSEF request need only be made if a previous PUTRCD request
f%‘ was issued. The CLOSEF will first write to disk any modified blocks in
S the buffer stack and then load $DISKUT3 to set the EOD marker.
¢ 6.1.6. Return Codes.
'Qﬂ Following a successful linkage to one one of the DIRECT
$¥: subroutines the first two words of the File Control Block will each have
b a value of -1 (this is also a doubleword value of -1). An unsuccessful
e linkage will have an I0-RET-CODE value as defined in Figure 6.3. The
pb; I1I0-DSCB-CODE may also have a value other than -1, If this {s the case
vt the value may be an EDX Read/Write Return Code as given in Figure 6.4 or
{5 a $DISKUT3 Return Code as given in Figure 6.5, Figures 6.4 and 6.5 were
*w' copied from the Event Driven Executive Messages and Codes Manual
¥ (SC34-0445-1), Wwhich figure applies may be determined from the value of
I0-RET-CODE.
X\ Y
S‘: 6.2. External Addresses:
ok
Q Q GETRCD Read Record Subroutine entry point.
PUTRCD Write Record Subroutine entry point.
For. CLOSEF Close File Subroutine entry point.
O
O
ﬁ’ 6.3. Called Subroutines: None,
4
e
4"..
l‘)'t
oS
)
2
B - -
¥
i I

)

"A . f LY T YR S LY. L R N L Y S £ Cu € g ™ LR Tl - -
AT) D OO0 g o’ IOl P LI PATRY 3 LRl LSRR N LN T OO
BN LU ‘.'?‘ O 'i‘!"l!.' f‘. WU i :‘. !'l] !'5 W AN "‘- %y ‘.aji ' {1) ._)’"f 3 NI R »

A ‘ '
s ',,‘.'

T-501
DIRECT

100 An open error occurred, the contents of I0-DSCB-CODE
indicate the type of error. If this value is -1 then the
error was that the subject data set was PGM rather than
DATA..

101 A read error has occurred, the contents of 10-DSCB-CODE
indicate the type of error. This error code can occur
following either a GETRCD or PUTRCD request.

102 A write error has occurred, the contents of I0-DSCB-CODE
indicate the type of error. This error code can occur
following any linkage.

104 Record number is greater than the highest record number in
the file plus one following a PUTRCD link. Honoring the
request would create a gap in the file.

110 End-of-file indicator following a GETRCD link.

120 End-of-file indicator following a PUTRCD link.

190 A CLOSEF request has been made and the subject file is not
open.

JO-RET-CODE Error Values

Figure 6.3

:’s!:' =15 -

T "

v o O T, CAA NS SN SRR A AN "R P AR P LAY ¥ N NS T \23-::\\:\"-
R .’k)«'- DAL J.‘!h!'o‘&ﬁ‘ l?‘i !'a ‘ }-'\ 3 \ .c‘ba.‘.k !h ’.0 ?‘-‘."5\ {\\’ Pt X a!'\ n'~ ‘-'r !\'.) -*' 2 ..\ .'-." gt oy

T=-501

DIRECT

Return Codes (by Function)
Disk and Diskette Read/Write Return Codes (continugd)

Return
Code Condition

-1 Successtul completion

1 1/0 error and no device status present

{this code may be caused by the 1/0 ares

starung 8t an odd byte sddress)

1/0 error trying 10 read device status

1/0 error retry count exhausted

Read device status | /0 instruction error

Unrecoverabie 1 /0 error

Error on issuing 1/ O instruction for

normal | /O

A no record found condition occurred

» seek for an ahternate sector was performed.

and another no record found occured.

for example, no siternate is assigned

8 A system error occurred while processing
an 1/0 request for 8 1024 -bytg sector diskene

9 Device was offiine when | /0 was requested

10 Record number out of range of data set- -may
be »n end-of-file (data set} condition

1 Data set not open or device marked unusable
when /0 was requested

12 DSCB was not OPEN; DOB address =0

13 if extended deleted record support was requested
{SDCSBFLG bit 3 on), she referenced sector was not
formaned at 128 bytgs/sector or the request was
for more than one 286-byte sector.
if extended deleted record supporn was not
requested ($DSCBFLG bit 3 off), a deleted sector
was encountered'duning 1/0.

14 The first sector of the requested record
was deleted

15 The second sector of the requested record
was deleted

16 The first and second sectors of the requested
recorq Were deleted

. WL <N

N WN

~

Note: The actual number of records transferred is in the second word of the TCB.

EDX Read/Write Return Codes

Figure 6.4

Chapter § Return Codes MC-3

.
‘&

)
PSSR

v
Y

AL

Return Codes (by Function)

P T T T T W T WY T T T T W YW IYw e

T-501
DIRECT

$DISKUTS3 Return Codes

The $DISKUT3 program places a return code in the first word of a data set control block
specified in a DSCB statement

Condition

10
1n

12
13
14
15
17
18
19

1
23

Invahd request code psrameter {not 1-6)
Volume does not exist (All functions)
Insutficrent space in library (ALLOCATE)
Insufficient space in directory (ALLOCATE)
Data set siready exists - gmalier than the
requestec sliocation

Insutficient contiguous space (ALLOCATE)
Disaliowed dats set name, ¢g SSEDXVOL or
SSEDXLIB (all functions except OPEN)

Deata set not tound

(OPEN, RELEASE. RENAME!

New name pointer is zero (RENAME)

Disk is busy

(ALLOCATE, DELETE, RELEASE. RENAME)
1/0 error writing to disk

(ALLOCATE, DELETE, RELEASE. RENAME)
1/0 error reading from disk (All functions)
Date set name is all bianks (ALLOCATE. RENAME)
Invalid size specification (ALLOCATE)

invalid size specification (RELEASE)
Mismatched data set type

(DELETE, OPEN. RELEASE. RENAME)

Data set aiready exists - larger than the
requested sllocstion

SETEOD only vahd for data set of type “‘'data”
Load of SDISKUT3 taled (SRMU only)

Tape data sets are not supported

Volume not initialized or Basic Exchange Diskette®

* The Basic Exchange Diskette has been opened.

MC-310 sSCl4-044c

“»

.‘. 'y N Te - Ia . J' [.‘(-f.
RASOSCI SRR, lb'c.“l. 008 WV {‘{» RN TRN

\

$DISKUT3 Return Codes

Figure 6.5

A -

o, !'.rl"

lals

Ca? o a ot e At e o
e Y AN e

'O T-501
EVALHD

oy 7. EVALHD

:‘e.

. 7.1. Description:

1&& Tris CC2IL subroutine constructs a character string text line

ff, containing selected identification information regarcing a MCCRES

:pﬂ Evaluation. The form of the requisite COBOL call statement is as

.g: follows:

CALL "EVALHD" USING text-line eval-parm loc-tab rtn-tab

ﬁ‘ where the four required parameters are defined as follows:
o
25 1 text-line. 0
& 2 FILLER PIC S9999 COMP SYNC. 02
2 LENGTH PIC S9999 COMP SYNC. 03
5‘ 2 TEXT PIC X(length). o4
w . 05
o 1 eval-parm 06
}k "2 EP-ERR-CODES PIC S9(9) COMP SYNC. 08
o 2 EP-ERR-NUM PIC S9999 COMP SYNC. 09
2 EP-VQL PIC 99, ' 10
T 2 EP-EVAL PIC 999. 11
155 2 EP-UNIT-EDXVOL PIC X(6). 12
N 2 EP-VOL-FILE PIC X(14). 13
} 2 EP-LIST-FILE PIC X(14). T4
- 2 EP-GROUP PIC X. 15
. 2 EP-SECTIONS PIC X(7). 16
o\ 2 EP-POSITION-SW PIC X. 17
N 2 EP-FIXED-SW PIC X. 18
:; . 19
1 loc-tab. 20
2 LOCATION PIC 59999 COMP SYNC OCCURS n TIMES. 21
22
ey 1 rtn-tab 23
Lj 2 RTN-INDEX PIC S9999 COMP SYNC OCCURS n+1 TIMES. 24
o
p{ The following notes refer to the interpretation of these four
i parameters by EVALHD and to the responsibilities of the calling routine.
" In order to facilitate the discussion, reference is made to the 'line
W numbers’' assigned to the COBOL statements appearing above.
‘:j a) The length given in line 02 must be no greater than the
::ﬁ length definecd for line 03. Further, the initial contents of
~ TEXT (line 03) are not significant.
- b) Lines 06 through 12 of eval-parm are used as the first
S parameter when calling UNITI2. See the discussion for UNITI2
\; regarding these lines.
.‘
-
J-‘
&
:‘: - 18 -

N T-501
EVALHD

o c) EP-VOL-FILE is a 14 character field where the first eight

) characters contain the name of the MCCRES Volume Nomenclature
= File and the last six characters contain the EDX volume name
where this file resides.

(M i
e ¢ EP-LIST-FILE is a 14 character field where the first eight
?ﬁ; characters contain the rname of the MCCRES List Nomenclature
oh File and the last six characters contain the EDX volume name

where this file resides.

W e) EP-GROUP must contain the MCCRES Group (List) code that
s applies to the MCCRES Evaluation identified by lines 10 and
an 1.

o f) EP-SECTIONS may be blank or contain up to seven MCCRES
Section codes which, if requested, may be included in the
uﬁ- final contents of TEXT (line Od4).

P g) EP-POSITION-SW is a four valued switch which controls the
an final justification of the contents of TEXT (1lineO4). The
' four values are as follows:

ot N -> none

9 L => left

:2) C -> center

.'} else -> right

) h) EP-FIXED-SW is a two valued switch that controls the field

- width associated with each identification data element when

o it is placed in TEXT by this routine. If this switch has a

;i- value of 'Y', the implied length is that given as the maximum

) length in i) below. Otherwise, the length is the location of
v the last non-blank character when the first position of the

field is taken to be location one.

e i) Each element of rtn-tab, save the last, gives an index of the
:z routine that processes a particular identification element.
aﬂ‘ This table is scanned, processing each element in order,

A until a zero entry is encountered. Thus, for n elements the

table must contain n+!1 entries. The valid routine indexes,

%) the corresponding identification data element, and its
f; intrinsic maximum field length are given as follows:
L]
Wy 1 -> MCCRES Volume Roman Numeral 11 char
- 2 -> MCCRES Volume Name Text 20
= 3 -> Evaluation Number 8
o, 4 -> Group ID Code 7
Ny 5 => Included Section Codes 16
;;ﬁ 6 -> MCCRES List Text 20
5% (if unknown) 7
7 -> MCCRES Unit ID 20
¥ 8 -> Evaluation Closing Date 21
q:: 9 -> MCCRES List ID 7
3}, 10 -> MCCRES POR Reference ID 12
AL,
N - 19 -
,1'

$'\.\‘\--\--$~-‘n\.“.‘- <,,., = ",.._ ._.-_'.).\‘)\'._._'\-\ N
) 'ty \) h ') " 'r (- * J- ’SA ‘(‘y-‘f' ! " M \f*-’ l 7 ‘ ‘. »N“(\' A% -"(* B A 'fh.

CRTOR R PO i A RAS e dial Sat dall Sl el ges Aett ol Ak Aol Bokh Sk LA A A'Ad's A Aia g s Aia Ao Aie S 4

T-501
EVALHD

J) Each element of loc-tab determines the beginning position in
TEXT for the identification element whose routine index is
the corresponding entry in rtn-tab. Thus the dimension of
loc-tab neecd only be n when tnat of rtn-tab is n+l1, Values
greater than zero give the beginning location in absolute
terms. Otherwise, the absolute value gives the number of
spaces between the present field and its predecessor.
Initially the predecessor ends at location zero.

In operation, EVALHD first blanks TEXT, scans rtn-tab processing
each identification data element in turn until a routine index of zero
is encountered, justifies the final contents of TEXT as requested by
EP-POSITION-SW, and then returns to the calling routine. Processing
impli{es moving the subject identification data element to TEXT beginning
at the column controlled by the current value of the column-index
counter and the corresponding entry in loc~tab and then setting the
column-index counter to locate the next available column as controlled
by the value of EP-FIXED-SW, i.e., using the maximum length of the
subject identification data element or its current length. No order is
required for processing data elements and no check is made to protect
against field overlap or TEXT overflow (characters falling outside TEXT
! are simply ignored).

7.2. External Addresses:
EVALHD Subroutine entry point.

7.3. Called Subroutines: GETRCD, ROMNUM, SLIDEL, & UNITI2.

)

-20-

D
k)

", : Y A P MR - LT I P LY L L U - - o .m
$! W W W T . o O e TP o A N P o G
RCIOOCOTR 5'.“&"&'.1‘. q"h ! o.!'n.!'-‘, ;'... N, ' 3 "‘ S Al ~’ oY Kl \ ! > '\'N K S ﬂ. "\ "

AT AAS Al ad Sah Ank Sea e bl e o 7@1

-.!:-
196 T-501
GETALL
Vo
‘_C q
oN 8. GETALL
;ﬁ ,
e 8.1. Description:
‘c' Tnis EDL sutroutine, intencecd to be called from a CCBTL prograrm,
;tz: t-~anslates hex coded information, packed two hex digits per bytie, t¢
;xja character coded information, packed one character per byte. The primary
.F*; use of this subroutine is to unpack MCCRES scores from the 80 character
Fh area in the MCCRES Evaluations Master File format to a 160 character
, area for processing by a COBOL program. The actual translation
ar . performed is based upon a 16 byte translate table which provides the
"‘. translated character for each of the possible hex values.
‘: , The form of the requisite COBOL call statement is as follows:
CALL "GETALL"™ USING source,trans,dest, index
‘:1 where the four arguments are defined as follows.
QV, source The hex coded source area which must be at least (L+1)/2
XA bytes long where L is the value of the fourth argument.
o trans The 16 byte translate table.
‘i;f dest The character destination area which must be at least L
L bytes long where L is the value of the fourth argument.
_— index The index (PIC S9999 COMP SYNC) of the last hex code to
‘SRS be translated. Presently this must have a value of from
- 1 to 160, inclusive.
:1;2 8.2. External Addresses:
¥
ff GETALL Subroutine entry point.
e #
SN
A 8.3. Called Subroutines: None.
N

GETONE
) gn‘
R 9. GETONE
W 9.1. Description:

Trnis EDL subroutine, intended to be called fror a COB0. program,

o
%a. translates one hex coded digit to a character coded byte. The primary
W use of this subroutine is to unpack a MCCRES score from the 80 character
ﬁ; area in the MCCRES Evaluations Master File format to a character code
Lk for processing by a COBOL program. The actual translation performed {is
o, based upon a 16 byte translate table which provides the translated
‘qé character for each of the possible hex values.
l'.
:ks The form of the requisite COBOL call statement is as follows:
.i. }
at t
PO CALL "GETONE" USING source,trans,dest,index
~§§' where the four arguments are defined as follows.
o
]
y;? source The hex coded source area which must be at least (L+1)/2
{5- bytes long where L is the value of the fourth argument.
"[Q,I

. trans The 16 byte translate table.
b
ng dest The character destination byte.
sq index The index (PIC 9999 COMP SYNC) of the hex code to be
! translated. Presently this must have a value of from 1
. to 160, inclusive. ’
;g?' 9.2. External Addresses:
RO
i.:; GETONE Subroutine entry point.

» 'l
- 9.3. Called Subroutines: None.
o
o
A
‘-‘C,\
Sy

2%
" h'."-
g

(o
e

E - 22 -

LN ANE]
tom
-

N AN
[3
'\' .‘\,\._ 8

o«
-

\.‘\.--‘J.'

g’ T-501
GETWRD

‘I

L)

49

%) 10. GETWRD

193

)l

M 10.1. Description:

W Tric ELL sutrcutine will deliver to the calling routine a 'worc'
1 from the user. UnZer control of the calling routine, the word deliverec
>y may be a complete user response (excluding leading and trailing blanks

but including all internal blanks), a single word from a user response
(delimited by blanks), or a null user response. The 'word' returned may
be either the next 'word' from a previously entered user response (no

t‘

: prompt given) or the first 'word' from a new user response (prompt given

§ if supplied by the calling routine). A null user response is defined as

:: no non-blank characters supplied by the user and is usually simply a

b* carriage return following the prompt message. It may also arise when

" the request is for a word from a stored response only and no such word
remains.

::: The format of the requisite EDL call statement is as follows:

oy

l} CALL GETWRD,msgadr,wrdadr,trtadr,ctlwrd

¢ X
where the four arguments are defined as follows.

&

¢ msgadr The address of a TEXT statement containing the prompting

j character string. If no prompt is desired this argument

¢ must be zero.

) wrdadr This argument is the address of either the TEXT area
{; where the delivered word is to be placed or the area

v where the address of the beginning of the word is to be
':- stored. Which form this argument takes is determined by
o the contro. word defined below.

o trtadr The address of a 256 byte translate table which is to be
Y used to translate the user supplied word to the returned
i: word. Normally this table simply translates lower case
::. letters to upper case letters leaving all other bit
) combinations as is. This argument must be zero if no
* translation i{s desired.

N ctlwrd This argument is a control word which is divided into two
,: parts. The first byte, undetermined by the calling

,; routine, i{s set to the length of the delivered 'worc' by
',s this subroutine. The second byte consists of eight

4 control switches which are defined as follows:
>
Nl
Y
hY
“..

)

,

?,

v - 23 -

e .:‘:,:{'.r e ‘5 ‘\- -, \l F3INE "”'} J .f‘ RN R et "'-\:‘"-:".'\:'F‘;“F.*{J-";ﬂ."‘;‘.\"-‘

‘,.&Lx._;_m- Iy | WENNORY TS NN S Al ‘xh Lh"f‘.n.h»_i‘b.l ' . i i \ u.ﬂid.ﬂ y JJL“‘(L‘:‘K

<,

e o e Pt
ZOA PP

> PSS

..‘.‘ »

R AN

"o

“\',l.‘
h

L Y

10.2.

10-3'

HEX

80
4o
20
10
08

04
02
01

T-501
GETWRD

MEANING

(reserved -~ 0)
(reserved - 0)
(reserved - 0)

1 =
1 =

)
1 =

External Addresses:

Force user response.

Return 'word' indirectly (argument 2 is
address of 'word' address.

Return only stored response (no-read switch)
Return all of user response.

User response to be on line following prompt.

GETWRD Subroutine entry point.

GW$WORK User response area (80 characters - not normally
referenced)

GW$BEGIN Index of the location in GW$WORK where the last
returned word begins.

GW$SCANI Index of the location in GW$WORK following the last
return word.

GWS$RESPL Index of the location in GW$WORK of the last non-blank
character of the most recent user response.

Called Subroutines:

None,

- 24 -

N o) N AT Y SRR GY L AT e e At - -\'_.‘ AR R TR LR LT O PC PR
L BN I'-'\....O’»‘l.-'\‘:‘l'!" ~|"'s AT TG ;.’ {) J'a. 'fn (Tt (s Loy oy F o i '* T TR T T e v # '

|

::"s 1-501
IDCODE

is, 11. IDCODE

_3& 11.1. Description:

Tr.is EDL subroutine, intendec tc be called from a C230. program,
translates a thirteen byte numeric/character count column identification

e fielc suitable for COBOL processing into six byte binary/hex coded field
: for inclusion in the header record of a MCCRES Requirement Counts File
R header record. A count column identification field identifies the

MCCRES Volume, historical evaluation number, group code, and MCCRES
Section selection, if any, for a Requirement Counts Column.

o,

L&
K : The form of the requisite COBOL call statement is as follows:
140
e CALL "IDCODE" USING id-parm
?f” where id-parm has the following COBOL definition.

v
I 1 id-parm.
-:~; 2 GROUP-TABLE PIC X(16) VALUE "0123u56789ABCDEF"
por(s 2 SECTION-TABLE PIC X(15).

2 CODED-ID PIC X(06).

*, 2 DECODED-ID.
A 3 ID-VOL PIC 99.
e 3 ID-EVAL PIC 999.
B 3 ID-GROUP PIC X.
WA 3 ID-SECTS PIC X OCCURS 7 TIMES.
‘; Any section code appearing in ID-SECTS must be contained in
o SECTION-TABLE. Similarly, 1D-GROUP must be contained in GROUP-TABLE.

This subroutine moves information from DECODED-ID to CODED-ID as
i { follows:

a) The binary value of the first byte of CODED-ID is set equal

el to ID-VOL.
2N
‘{q b) The binary value of the second byte of CODED-ID is set equal
o to ID-EVAL.
ARMN
ot ¢) The hex value of the first half of the third byte of CODED-ID
- is set equal to the offset in GROUP-TABLE of the character in
b ID-GROUP.
"-:.
K- ¢ d) The indexes of any non blank characters in ID-SECTS are
“ﬁ stored in the seven hex values located in the second half of
» the third byte and the remaining three characters of
[CODED-ID. Blank positions are represented by hex zero.
fﬁi 11.2. External Addresses:
§ﬁ~ IDCODE Subroutine entry point.
W
< 11.3. Called Subroutines: None.
lks‘
Y 25 -
‘T}
l\-
-\- - . R U e N LR | - - A T TR W SRR Y . -
J‘,r 1_\ . N ‘\..{\ _‘,.1,, qﬁ. :“ J J, "‘:' \.«_.-,'»'_li.. o .).‘ L PR INEAERS e e e e e e S

T-501
IDDECODE

3

12. IDDECODE

L4
a
v

1 P
o
.’\‘
X

%
4y
R

12.1. Description:

This EDL subroutine, intended to be callec frzr a COBOL prograrm,
translates a six byte binary/hex coded count colutrn identification
flield, as it appears in a MCCRES Requirement Counts File header record,
into a thirteen byte numeric/character field suitable for COBOL
processing. The coded count column identification field which this
subroutine decodes was previously the product of the companion coding
subroutine, IDCODE, which operates from a thirteen byte
numeric/character field similar to the output of this subroutine.
Either of these fields identify the MCCRES Volume, historical evaluation
number, corresponding group code, and MCCRES Section selection, if any,
for a Requirement counts column.

The form of the requisite COBOL call statement is as follows:
CALL "IDDECODE" USING id-parm

where id-parm has the following COBOL definition.

1 id-parm.

2 GROUP-TABLE PIC X(16) VALUE "0123456789ABCDEF".

2 SECTION-TABLE PIC X(15).

2 CODED-ID PIC X(06).

2 DECODED-ID. h
3 ID-VOL PIC 99.
3 ID-EVAL PIC 999.
3 ID-GROUP PIC X.
3 ID-SECTS PIC X OCCURS 7 TIMES.

SECTION-TABLE must have been initialized to the section table present in
part one of the Count Requirements File header record and CODED-ID set
to one of the six byte count identification fields in part two of the
same header record. This subroutine moves information from CODED-ID to
DECODED-1D as follows:

a) ID-VOL i{s set equal to the binary value of the first byte of
CODED-1ID.

b) ID-EVAL is set equal to the binary value of the second byte
of CODED-1ID.

¢) ID-GROUP is set equal to the character in GROUP-TABLE whose
offset is the hex value of the first half of the third byte
of CODED-ID.

d) The second half of the third byte and the remaining three
characters of CODED-ID are interpreted as seven hex digits
which, when non-zero, index SECTION-TABLE. Each indexed
character in SECTION-TABLE is moved to ID-SECTS.

-26-

R e o S R g S s s e L e o mmmﬂ

at 12.2. External Addresses:
e 1DDECODE Subroutine entry point.

"W 12.3. Called Subroutines: None.

k30 - 27 -

& o iy I » ~- - o N - - -
e, 4O b 30 n B, O SO
RN a:' RESFI NS, < (AR ‘-‘t‘~‘«\’\““'t‘l-'ﬁ‘?‘\k‘t'g':.’ v -‘:"‘:‘.‘s-xﬂ!'\ ey W Pl P) 'Mﬁ .

T-501
IDDECODE

RO AL WY, TR e

NAARAN

o

T-501
PRINTL

13. PRINTL
13.1. Description:

Triis EDL subroutine is interied tc replace COEDL's 1/0 routirec
for the syster printers. This routine facilitates program contrcl of
printer selection and, for printers other than $SYSPRTR, the setting of
the left margin. Each call to this routine performs either an OPEN,
CLOSE, NEWPAGE, or WRITE AFTER SKIP function. The function performed is
determined by the value of the first word of the first parameter passed
with the COBOL call statement. Each of these call types are discussed
separately below.

13.1.1. OPEN

The form of the requisite COBOL call statement to perform the
OPEN function is as follows:

CALL "PRINTL"™ USING parmi
where parm! has the following COBOL structure.
word1 PIC S9999 COMP SYNC VALUE -6.

word2 PIC S9999 COMP SYNC VALUE left margin. (The number of
spaces to the left of print position 6ne. This has no
effect if the printer name is $SYSPRTR. The default
value i{s 16.)

word3 PIC S9999 COMP SYNC VALUE new line one. (The line number
on which the line of a NEWPAGE call is printed. The
default is 4.)

string PIC X(8) VALUE printer name. (The printer's name used
during System Generation. At present $SYSPRTR addresses
the IBM U974 printer and $SYSUIT5 addresses the IBM 4975
printer. The default value is $SYS4975.)

All subsequent calls to PRINTL will address the above referenced printer
until another OPEN call is made. The calling program may switch between
printers at any time by simply issuing the proper OPEN calls. However,
only the initial OPEN call and those that follow a CLOSE call effect the
left margin for the open printer. If the first call to PRINTL is not an
OPEN request, then the default values given above apply.

13.1.2. CLOSE

The form of the requisite COBOL call statement to perform the
CLOSE function is as follows:

|
\

P T O Y W YW

TR
o ..

T-501

PRINTL
; CALL "PRINTL"™ USING parmi
T% where parm! has the following COBOL structure.
,; wo~dl PIC S9999 COMP SYNC VALUE -k,
ﬁ? This call is optional. Its primary purpose is to logically close the
» current spool job. The effect of this call is automatic at end-of-job

and, therefore, not required. It would only be used if it was desired
to end a spool job, change the left margin on a subsequent OPEN call to
4 the same printer, and then generate a new report.

13.1.3. NEWPAGE

5 The form of the requisite COBOL call statement to perform the
NEWPAGE function is as follows:

i: CALL "PRINTL" USING parmj parm2 ... paran
;; where the n parms have the following COBOL structures.

: parmi:

k- wordl PIC S9999 COMP SYNC VALUE -2.

5’ word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be printed.
parmi, { = 2 through n-1 (optional):

wordl PIC S9999 COMP SYNC VALUE number of times to overprint
' : (i-7).

v word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be overprinted.
parmn (required):

word1 PIC S9999 COMP SYNC VALUE O.

The NEWPAGE call causes the string in parm! to be printed on the printer
at the line defined in the most recent OPEN call, Then the routine
steps through the parameter string, processing each successive parameter
as an overprint parameter, until a parameter is found whose overprint
value is zero. Thus, all NEWPAGE calls must have at least two
parameters. Each overprint parameter causes the overprint parameter
string to be printed on the current line the number of times given in
the overprint count. The overprint count is formed by ANDing the value
in wordl with 7, 1It is the calling program's responsibility to maintain
the current line number and force new pages appropriately. No automatic
pagination is provided by this routine.

;-” X .
i R o A A Y 4 3

Y Yk

29

L S

TN Sy
aa X4

T R RO S
: \'\'_ AN e

o PR N
Sy x;\??,‘,sf

T-501
PRINTL

13.1.4, WRITE AFTER SKIP

The form of the requisite COBOL call statement to perform the
WRITE AFTER SKIP function 1s as follows:

CALL "PRINTL"™ USING parm! parm2 ... parmn
where the n parms have the following COBOL structures.
parmi:

word1 PIC S9999 COMP SYNC VALUE >=0
word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be printed.

parmi, { = 2 through n-1 (optional):

word1 PIC S9999 COMP SYNC VALUE number of times to overprint
(1-7). :

word2 PIC 59999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be overprinted.
parmn (required):

wordl PIC S9999 COMP SYNC VALUE 0.

The WRITE AFTER SKIP call causes the string in parml to be printed on
the next line after skiping the number of lines given in word! of parml.
Then the routine steps through the parameter string, processing each
successive parameter as an overprint parameter, until a parameter is
found whose overprint value is zero. Thus, all WRITE AFTER SKIP calls
must have at least two parameters, Each overprint parameter causes the
overprint parameter string to be printed on the current line the number
of times given in the overprint count. The overprint count is formed by
ANDing the value in wordl with 7.

13.2. External Addresses:

PRINTL Subroutine entry point.

13.3. Called Subroutines: None.

indiatisieat it sttt

|

T-501
PUTALL

14, PUTALL
14.1. Description:

Tnis EDL subroutine, intended tc be callei fror a COBOL prograrm,
translates character coded information, packed one character per byte,
into hex coded information, packed two hex digits per byte. The primary
use of this subroutine is to pack MCCRES scores into the 80 character
area in the MCCRES Evaluations Master File format from a 160 character
area used for processing by a COBOL program. The actual translation
performed is based upon a 16 byte translate table which provides the
translated character for each of the possible hex values.

The form of the requisite COBOL call statement is as follows:
CALL "GETALL"™ USING dest,trans, source, index

where the four arguments are defined as follows.

dest The hex coded destination area which must be at least
(L+1)72 bytes long where L is the value of the fourth
argument.

trans The 16 byte translate table.

source The character source area which must be at least L bytes
long where L is the value of the fourth argument.

index The index (PIC S9999 COMP SYNC) of the last character to
be translated. Presently this must have a value of from
1 to 160, inclusive.
14,2, External Addresses:

PUTALL Subroutine entry point.

14,3, Called Sudbroutines: None.

v .
s

n \ .‘! \ ,;".') ° . {.‘-',’- N o .
\')‘.x- S e LA)A.ru ,c.‘.t_‘.-“"::'

bt T-501

PUTONE

i ¢

s

oy 15. PUTONE

n:'::)

i 15.1. Description:

f;; Tr.is EDL subroutire, intended tc %e called from a COBOL prczran,
;ﬁ; translaltles a character code to a hex coded digit. The primary use of
E: this subroutine is to pack a MCCRES score into the 80 character area in
c}: the MCCRES Evaluations Master File format from a character code

T processed by a COBOL program. The actual translation performed is based
= upon a 16 byte translate table which provides the translated character
ég‘ for each of the possible hex values.

r

& The form of the requisite COBOL call statement is as follows:
R

v CALL "GETONE" USING dest,trans, source, index

i:? where the four arguments are defined as follows.

‘ !

3 s dest The hex coded destination area which must be at least

*® (L*1)/2 bytes long where L is the value of the fourth
REE argument.

}& trans The 16 byte translate table.
&R
NS source The character source byte.

index The index (PIC 9999 COMP SYNC) of the hex code to which
the translated character is to bde placed. Presently this

& must have a value of from 1 to 160, inclusive.

»é 15.2. External Addresses:

PUTONE Subroutine entry point.

15.3. Called Suoroutines: None.

b - 32 -

T T T

%y . AN LT, L e LB
MR, DL DA o

WV N N W (XA W TR MY AT AT Y. LY A NS N) W Ay ot
oW o g I'cfd“;?l“'05’.‘1’%'1!&‘5‘.’4,I"g'«l ,l'q, ¥ ‘.,\l', S L ,'y,. 5‘ N i alah) , ,"I"hl'.:{ O e X _.',l!.'l‘,‘ '.:0',‘.9‘

A T-501
ROMNUM

A

\

:" 1]

W 16. ROMNUM

A p(]

.&”- 16.1. Description:

~ This COBOL subroutine, 1ntended to be called from a COHIL

ﬁ; program, will convert an unsigned four digit decimal number to a left
N justified Roman Numeral character string. The range of this conversion
:} is from one (1) to 3999 (MMMCMXCIX). The limit of 3999 is imposed

. because the Roman Numeral Characters for 5000 and 10000, V bar and X

o bar, respectively, are not included in the normal character sets on the
??: system printers. The routine will operate to 9999 substituting W for V
I bar and Y for X bar. This extension was included in lieu of a special
: 3 error routine. The decimal number must be strictly numeric including
N 4 leading zeros. If this is not the case, the routine returns a null
o character string as an error indicator.

f;; The form of the requisite COBOL call statement is as follows:

g

Eﬁ CALL "ROMNUM" USING parm!

o

hf where parm! has the following COBOL structure.
e WORD1 PIC S9999 COMP SYNC. (The supplied value is ignored.
'ﬂj- This routine returns the length of the returned Roman
3y Numeral character string here. If the next field is not
.f$~ strictly numeric this value is set to zero.)

number PIC 9999 VALUE number to be converted.

oY ' string PIC X(16). (The supplied contents are ignored. The
,,2: converted Roman Numeral character string is placed here
A left justified. If the above field is not strictly
R numeric this field as set to all blanks.)

'Q@ 16.2. External Addresses:

L
};i ROMNUM Subroutine entry point.

)

o 16.3. Called Subroutines: None.
B

1534

R

TR

(KN

e
1 "~

LA &

g

KN

ey

2t

A - 33 -

e WAL N MO NP IR Ns 5,08

K

ot 340,00 4, N9 U0) (1" PR LR O TRl AP LT TP
R A R DR D ‘:ﬂ."c:'.h‘ OISR AASAC S e TRy {\"’f \"' W

LY
Y T-501
SLIDET
§§
9§
e 17. SLIDET
) 17.1. Description:
:y Tris EDL subroutine, intended to be called by & COBUL progran,
5’ left or right justifies words in a character string. The subroutine has
ey two entry points, SLIDEL to left justify and SLIDER to right justify,
A The supplied character string is considered to contain words, each
b’ separated by one or more blanks. The returned character string (the
same area of memory) will contain the same words, each separated by a
! single blank, with the first word beginning at the first position for
Wy SUIDEL or the last word ending in the last position for SLIDER. If the
%. supplied character string is all blank, it is returned all blank.
|
b
oY The form of the requisite COBOL call statement is as follows:
“t’ CALL "SLIDEi"™ USING parmi
'A,\’"
'3 where { is either L or R and parm! has the following COBOL structure.
"3
A
i word1 PIC S9999 COMP SYNC VALUE maximum string length. (Not
used by this subroutine.)
& 38
- word2 PIC S9999 COMP SYNC VALUE current string length.
s
'
j{ string PIC X(maximum string length) VALUE supplied words.
17.2. External Addresses:
- SLIDEL Subroutine entry point.
y{ SLIDER Subroutine entry point.
X
o
: 17.3. Called Subroutines: None.
I.‘
o
”,
Cd
o
'
J' :
)
N
A
~
.
s
[}
K}
18
\&
)i‘
l..
::‘|
fn‘ . - 34 -

B I £ i e o 4 S O L e T 6 T T S
L ", h «, ¢ ' d -« g . .
I «4"‘"(“" * "‘?"f LA RSOLAA N YW OE) "‘J o 28T Qn! al) '-\' d ' L > ﬂ h }) KP k’ oy -

P s

g _
L e

PRt i -

o
“eTeTa

¥
AR a8 s

VAR AR

RO

|

3,

A,

‘P)

s-
Ladaadd

AT

.~.I.~,.;.’-.

T-501
SQROOT

18. SQROOT

18.1. Description:

Tnis EDL s.ircutine, intended to be callieZ by & COEIL program,
computes the square roct of a non-negative fixed pcint number using an
iterative algorithm, namely Newton's Method. Simply stated, to compute
the square root r of S with an error less than e we define

r(0) = k

where k is any constant and successively compute

r(i-1) +« S/r(i-1)

varying i from 1 to n such that
[r(n) - r(n-1)| <e
The form of the requisite COBOL call statement is as follows:
CALL "SQROOT"™ USING sqroot-work
where sqroot-work has the following COBOL structure.
1 sqroot-work.,

2 NUMBER PIC S9(1)V9(f) COMP SYNC.
2 SCALE PIC S9999 COMP SYNC VALUE f.

In the above i and f must both be non-negative and their sum must be
less than 10,

SQROOT replaces NUMBER with its truncated square root. Note that
the square root has the same precision as NUMBER. Thus, the square root
of 2 is computed to be as follows:

f square root iterations
0 1 7
8 1.41421356 6

Throughout testing the number of iterations required varied from five to
seven,

18.2. External Addresses:

SQROOT Subroutine entry point.
ITERCNT Iteration Count (word).

18.3. Called Subroitines: None.

- 35 -

o A SRR e
S e N A e

-~ D

.......

LY LR AR LA RS
L A \!.N

T-501
TRANS!

19. TRANSY
19.1. Description:

Tr.ie EDL subroutine will translate a cha~az-te~ string, defined as
a TEXT statement, to the index of it's first occurrence in a table of
TEXT statements. Further, if requested, TRANS! will then translate this
index to the value of the corresponding entry in a table of single
precision words. This translate table may be a table of addresses.

The format of the requisite EDL call statement is as follows:
CALL TRANS1,arg,tab,reti,itab
where the four arguments are addresses defined as follows.

arg The address of a TEXT statement containing the character
string argument to be translated. The current length is
the argument's length.

tab The address of the first TEXT statement in a table of
TEXT statements to be searched for a match with the
argument. For each table TEXT entry, the maximum and
current lengths are taken to be the maximum and minimum
compare lengths, respectively. A match occurs for the
first table entry which, along with the argument,
satisfies three conditions as follows:

1) table entry minimum compare length not greater than
the argument's length,

2) table entry maximum compare length not less than the
argument's length, and

3) table entry and argument equal for a compare length
equal the argument's length.

A not found condition results in an untranslated index of
zero. The end of table condition is indicated by a table
entry of zero maximum length. The following is a typical
table of three entries requiring an exact match for a
found result.

TABLE TEXT 'FIRST ENTRY'
TEXT 'SECOND ENTRY'
TEXT 'THIRD ENTRY'
DC X'00' END OF TABLE INDICATOR

A similar table requiring equivalence on the first word
only of each table entry would be as follows:

-36-

Yy
o ,/‘

sl

AT 4
ey

u.l l“'— ‘Iv »‘ - ‘l‘.‘ 'f L

',.‘\,-\-"- TR A '-J' -'r--'---v
iy “a " " ng..‘!‘ ’kh N) 3‘"}'\:‘1 F" A@.‘!m

: T-501

TRANS1

‘ n‘;
s‘.;l
B ALIGN {
A - DC X'0BOS5'
S TABLE DC "FIRST ENTRY'
' ALIGN
N DC X'0Cot!
e DC 'SECOND ENTRY'
vy ALIGN
) DC X'0BOS "
A DC "THIRD ENTRY'

ALICN
‘v:,.ﬁ‘,_.' DC X'0000° END OF TABLE INDICATOR
&';:g’:
o] reti The address of the index to be set indicating the results
155-1'{ of the execution of this subroutine. This index is a
" single precision integer.
‘\;.\:g itab The address of a table of single precision integers which
:0’.0 are the corresponding translated indexes to be returned
::q: for the entries in the 'tab’ table of TEXT statements.
é',.jn{ This value is zero when the index 'reti' is not to be
RN translated. Note: this address locates the translation
. value for the first entry in the 'tab' table and it must
B be preceeded by A value for the translation of the not
:‘3 found condition if such a condition may arise in the
;4 execution of the subroutine. A typical table for either
.:; of the above tables follows.
A

A DC A(NFRTN) NOT FOUND ROUTINE

X ITAB DC A(FERTN) FIRST ENTRY ROUTINE
i : DC A(SERTN) SECOND ENTRY ROUTINE
e DC A(TERTN) THIRD ENTRY ROUTINE
D
it 19.2. External Addresses:
Ry TRANS1 Subroutine entry point.
t..';t
WAl
:::::, 19.3. Called Subroutines: ¥one,
‘ﬁ:g%
Tty
3
;t.‘
g
* gy
-
18594
+R%Y
1834
283
3y
M ‘:: !
I
w9 |
W ‘
.'bl
4::; - 37 -

R A A !T.v 1 ;\!‘r\ «“1‘{!\’\ ..*‘7(3, _1’._.6'.",(!.; t, "'»,,f?h‘t‘ 18, ‘?M‘.ﬁ«'(f‘cl‘ A

» Vot

R I I U I REPRN

s A ", ,1- N »"‘t‘; ’1' ..;
OGO K A oht IR i MO NSt A ST

BRX R NN AR R

[
AL

Py

[

PN AT T N T W T R AT N Ty e PR TR TS S >
R MRS XA MDY X' 'v-zo'q'i‘a‘o‘q,\'-. A R b i X e PGSR S ‘.l~

T —--—-’
T-501
UPCASE
20. UPCASE
20.1. Description:

This EDL subroutine is non-executable. It is simply a 256 byte
table in which each byte contains the binary value representing its
location in the table with the exception of those positions
corresponding to the lower case alphabetic characters each of which are
replaced by the upper case value. This table i{s normally used to
translate lower case characters to upper case characters.

20.2. External Addresses:

UPCASE Table Location.
UPCASE# Table Location.

20.3. Called Subroutines: None.

- 38 -

NN
2

P] 1S B Iy v,
[", ; ‘..%_ ",‘".!. L0 L .‘ﬂ‘ S

T-501

UNIQUE
21, UNIQUE
21.1, Description:

;Q;, This EDL subroutine, intended to be called from a COBOL program,
53 p will left justify an ordered set of unique characters taken from the
g’ original contents of a supplied character string. The resultant length
&g’ of the returned character string is also returned.

e’
, The form of the requisite COBOL call statement is as follows:
Ak
:,% CALL "UNIQUE"™ USING parm!
pOnl!
! where parm! has the following COBOL structure.

4 wordl PIC S9999 COMP SYNC VALUE maximum string length. (Not
B\t ' used by this subroutine.)
o .
oy
:%\q word2 PIC S9999 COMP SYNC VALUE current string length. (Upon
AW entry this word contains the length of the string to be
B\ scanned for unique characters. Upon exit this word

o contains the number of unique non-blank characters found.
K

\
23‘ string PIC X(maximum string length) VALUE source/destination
: #' string. (Upon entry this string contains the characters
AN to be scanned. Upon exit this string begins with the
¥
e ordered unique set of characters found. The positions to
. the right of the last unique character contain the
v original contents of this string.)
‘ .
& 21.2. External Addresses:
WYy
Eat UNIQUE Subroutine entry point.
:;“ 21.3. Called Subroutines: None.
(. 1.8
?:ﬁ
Nl
.‘!‘j.
N
li;
o

-4
R

e
'\},.:
) ,\
s
o

e

3

I\:.l‘s . -39 -

NN AR S LN LN DI 2. el ¢, W A RN NG SOOI A 300
TURCLR AN .t'n,.\'u A AN _l‘aJ.t’A.Q‘“L‘ w,‘,\.u\i’.n‘,- PN) 2 '. ¥ 3 ' Ry W ‘\“,_t.,ilf'.i.q. 'Q..';‘.l‘q‘. X '.. ft.“‘a."d,‘. %) 0‘?'5 ’.‘l‘.‘ltq,l’;:’h.'!,.lf..‘_‘.:l.". ‘..OJ.O&.I!"

‘o dhd v eNw W ww Ak At aleb SR ALA ShA Skl i Akl aid- ald o ok an dii ol ian el Al s Aok Aoh At gl S A-A A Saa Soa Bie At 4 a0 San st aas ool s oul o v T

e T-501 |
UNITIZ {
Hagd :
Wyt 1
u: ‘
o 22. UNITI2
o
i
:.* 22.1. Description:
'-, Tris COB2L sutroutine delivers a MCCRES Unit File record
:ﬁw identifiec by its MCCRES Volume and historical evaluation number. It is
¢2 required that each unit file be named Ui where i is a MCCRES volume
ff# number, that only the named MCCRES Volume be represented in the file,
N and that the file be in strict ascending sequence on historical
evaluation number. Reference to the file is by volume and evaluation
,ﬁ*, numbers directly on a 'best guess' basis and then sequentially, either
90N forward or backward to locate the requested record. If the requested
~y5 record does not exist a dummy record containing only the MCCRES Volume
?Q number and historical evaluation number is constructed and given a
B logical record number of zero.
fﬁ\ The format of the requesite COBOL call statement is as follows.
b 'h\
‘5: CALL "UNITI2" USING unit-parm log-rcd-area.
1R
W
b where the parameters have the following minimum COBOL definitions.
R 1 unit-parm.
" 2 UP-ERR-CODES PIC S9(9) COMP SYNC.
L 2 UP-ERR-NUM PIC S9999 COMP SYNC.
W 2 UP-VOL PIC 99.
W 2 UP-EVAL PIC 999.
2 UP-EDXVOL PIC Xx(6).
i.. '
58 1 log-rcd-area.
<o 2 LOG-RCD-NUM PIC S9(9) COMP SYNC.
" 2 LOG-RCD.
! 3 UNIT-VOL PIC 99,
e 3 FILLER PI1C X.
N 3 UNIT-EVAL PIC 999.
WS 3 FILLER PIC Xx(122).
'I
’ o The calling program must have filled in UP-VOL, UP-EVAL, and
A UP-EDXVOL (the EDX volume name where the unit files are located,
4 typically HRDMCV). Upon return from this routine, UP-ERR-NUM will be
‘ib unchanged for a successful request, or be set to 2 if the error occurred
-7, during the 'best guess' routine, to 3 if the error occurred during the
:& 'get-next' routine, or to 4 if the error occurred during the 'get-prev'
y - routine. 1In any event, the error is identified by UP-ERR-CODES (see
: Section 6.1.6).
-f} 22.2. External Addresses:
éh UNITI2 Subroutine entry point.
* 22.3. Called Subroutines: GETRCD.
<y,
Cd
%
N
. >,
T?"-‘ - bo -
v
L

e e A A AL BTN T L AT A A s At
I I I N A R A I N U N i A A I WX YR Sty

*. H ¥
SOOI

(2T WP E W PR EN W T W R T W T WY W T WY Ty TWUWO Y VW P U N W Fw
o h
‘::' T-501
UNITID
.‘E*":
£0
A 23. UNITID
oy
fﬂ\‘ 23.1. Description:
A Tris EZL subroutine, intended to be cal.ed by a COBOL prograrm,
;,: delivers a MCCRES Unit File record identified by its MCCRES Volume anc
;ji historical evaluation number. The operation of this routine is similar
ey to that of its successor, UNITI2, described earlier. In fact, much of
b the discussion of Section 22.1 applies.
ﬂf The format of the requisite COBOL call statement 1s as follows.
%E; CALL "UNITID" USING unit-parm.
o
ot where unit-parm has the following minimum COBOL definition.
% 1 unit-parm.
N ‘2 UP-EDXVOL' PIC X(6).
Ry 2 UP-VOL PIC 99.
r@ 2 UP-EVAL PIC 999.
Y 2 UP-FOUND-SW PIC X.
2 UP-EQOF-SW PIC X.
2 FILLER PIC X.
2 UP-RCD-NUM PIC S9999 COMP SYNC.
2 UNIT-RCD. '
3 UR-VOL PIC 99.
3 FILLER PIC X.
3 UR-EVAL PIC 999,
3 FILLER PIC X.
3 UR-TEXT PIC X(20).
3 FILLER PIC X.
3 UR-DATE PIC X(8).
3 FILLER PIC X.
, 3 UR-LIST PIC x(2).
& 3 FILLER PIC X.
3 3 UR-POR PIC X(4).
. 3 FILLER PIC X(9).
ith The calling routine must set UP-EDXVOL to the EDX volume
o label where the unit files are located and UP-VOL and UP-EVAL to
,Q the MCCRES Evaluation for which the unit record is requested.
ﬂq This routine sets UP-FOUND-SW, UP-EOF-SwW, AND UP-RCD-NUM
K appropriately. UR-VOL AND UR-EVAL are set whether or not the
ﬁh requested unit record is found. If the requested unit record is
B not found, the remainder of UNIT-RCD {s blanked.
2:: 23.2. External Addresses:
B
;“ UNITID Subroutine entry point.
j'..'
K 23.3. Called Subroutines:
‘b,
E:n
)
?‘\:"

B "?A“s -ﬂJ\J' R 3355&33§&§§§5§hgﬁg. e \Aafnjzixilixiﬁksis. 3&&3&

- -
R
-

A LKL
3
-)

A

©
o

‘l;? .

B S
YA

SRANF LT
MOCIAE

ATy

NP
X,

e
it
-
.

;|

T-501
YNRESP

24, YNRESP
24.,1. Description:

Trhis EDL subroutine will request a YES or NO response from the
user and return to the calling routine according to the user's response.
The calling routine has control over whether a stored (previous) user
response is acceptable or not, whether the response will be requested on
the prompt line or the next line, and if a prompt is given at all.

Upper and lower case characters are equivalent in any user response
(each character is converted to upper case before processing) and any
leading portion of the words YES and NO are equivalent to full words.
Thus, a user may respond either 'y' or 'n' to effect YES or NO,
respectively. Invalid responses result in a diagnostic message being
displayed and this routine being repeated with the force user response
switch being set if not already set. This process will repeat
indefinitly until the user supplies a valid response.

The format of the requisite EDL call statement is as follows:
CALL YNRESP ,msgadr,yesrtn,nortn,ctlwrd
where the four arguments are defined as follows.

msgadr The address of a TEXT statement containing the prompting
character string. If no prompt is desired this argument
must be zero. Weather or not the calling program
provides a prompt, this routine sounds the bell
requesting the user's attention.

yesrtn The address of the routine to be entered when the user's
response is YES. If it is desired to have the statement
following the subroutine call executed for a YES response
this operand must be zero.

nortn The address of the routine to be entered when the user's
response is NO., If it is desired to have the statement
following the subroutine call executed for a NO response
this operand must be zero.

ctlwrd This argument is a control word which is passed on to the
GETWRD subroutine to control the retrieval of the user's
response. For information on the bit settings and their
meanings refer to GETWRD for a full explanation. However,
only the bits X'10' (force a user's response) and X'01'
(user response on the following line) are allowed by this
subroutine. All other bit positions are forced to zero
upon entry to this subroutine.

- 42 -

PALEARAT. S X { o T AR PO PO LR SR R TR
4T Tt : = s
R DOORI DANGOB I e £ 2L Lt LA .

v

:T “"
'5,1' T’501
YNRESP
o ".'.
ﬁi:
;gaﬁ If it is desired to retrieve the capitalized user response it may
'%ﬁ-) be accessed via the external tag YN$WORK which addresses a four

S character TEXT statement. This might be desired when the user response
controls many branches throughout the program and it is desired to save
a user's response without altering the program flow, i.e., both the
yesrtn and nortn arguments are zero.

. 24,2. External Addresses:

YNRESP Subroutine entry point.

e YN$WORK Four character user response TEXT area - upon return
n character one will be either a Y or N,

frat 24.3. Called Subroutines: GETWRD, TRANS1, & UPCASE.

RY - 43 -

A A A A L A LA A T ST O WH T AR R A, CR TS T R TR ‘\-X«'- Cla s Tt '\‘i
. by PO WS AR AR M) W A oS oL W 'JJ.‘..{.‘A‘.A’L“J)‘I ‘I-.'n‘]'i)t:"ﬂ}\ﬂ AN

) T-501

REFERENCES

(1] BARZILY, Z. (1980). Analyzing MCCRES data. Technical Paper
' Serial T-427.

“ (2] BARZILY, Z., P. R. CATALOGNE, and W. H. MARLOW (1981). Assessing
\ Marine Corps readiness. Defense Management Journal, Vol. 18,
v No. 1, pp. 25-29,.

: (3] BRIER, S. S., S. ZACKS, and W. H. MARLOW (1985a). An application
¢ of empirical Bayes techniques to the simultaneous estimation of
! many probabilities. Technical Paper T-486. To appear in Naval
\ Research Logistics Quarterly.

(4] BRIER, S. S., S. ZACKS, and W. H. MARLOW (1985b). Results of a

f simulation study to measure the effectiveness of empirical
. Bayes' estimates of multiple probabilities. Technical Paper
i' T-499 (forthcoming).

) (5] CAVEs, W. E. (1985a). Summary of the GWU Marine Corps Combat
Readiness Evaluation System Software Applications (MCCRESSA).
& Technical Paper T-498,

% (6] CAVES, W. E. (1985c). Marine Corps Combat Readiness Evaluation

\ System Software Applications (MCCRESSA) support programs.

3 Technical Paper T-502.

“ (7] CAVES, W. E. and W. H. MARLOW (1985). Marine Corps Combat
Readiness Evaluation System (MCCRES) data base. Technical

:: Paper T-503 (forthcoming).

‘. .

" [8] ZACKS, S. and W. H, MARLOW (1982). Estimating the structural
Parameters of the Marine Corps Combat Readiness Evaluation

ﬁ System on the basis of the primary categories model. Technical

! Memorandum Serial TM- 69200.

[}

)

i (91 zACKS, S., W. H. MARLOW, and Z. BARZILY (1981). Category analysis

! of the Marine Corps Combat Readiness Evaluation System.
Technical Paper T-450,

[10] ZACKS, S., W. H. MARLOW, and S. S. BRIER (1985). Statistical
analysis of very high-dimensional data sets of hierarchically
Structured binary variables with missing data: an application

- to Marine Corps readiness evaluations. Naval Research

Logistics Quarterly, Vol. 32, pp. 467-490,

-

- pﬁ*‘.t

v
»
¥
L

- 4y -

SP Ml N > AP R m e A N NP P \--
e L R AN G AR A L N R U AN R L e Nl Qe ﬂm

D R R e e I I LTSt LNE LN LR R I S ST TREN N b 4 g A p¥ a- i ad:d v A Bp - i & . .

:I Wt
N X X -

SR

‘LI‘

-

-

ay Y

R e S | 0 (00 LY % DALY
;b ;‘. v'; o ‘l:%I X ’w'}, "'.' AR :' () ‘\ "‘ ' X :! '.‘ W '!' "‘l‘ ':“’“ ARSI,
‘.,»,l.g W s.utﬂ h,‘,s pral H" ¥ 'o.l i e,':"v.‘ t,t'c.t’ Hi‘u.h. '
{ W
\

‘Q

